skip to main content


Search for: All records

Creators/Authors contains: "Murphy, Benjamin S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Submarine cables have become a vital component of modern infrastructure, but past submarine cable natural hazard studies have mostly focused on potential cable damage from landslides and tsunamis. A handful of studies examine the possibility of space weather effects in submarine cables. The main purpose of this study is to develop a computational model, using Python , of geomagnetic induction on submarine cables. The model is used to estimate the induced voltage in the submarine cables in response to geomagnetic disturbances. It also utilizes newly acquired knowledge from magnetotelluric studies and associated investigations of geomagnetically induced currents in power systems. We describe the Python-based software, its working principle, inputs/outputs based on synthetic geomagnetic field data, and compare its operational capabilities against analytical solutions. We present the results for different model inputs, and find: 1) the seawater layer acts as a shield in the induction process: the greater the ocean depth, the smaller the seafloor geoelectric field; and 2) the model is sensitive to the Ocean-Earth layered conductivity structure. 
    more » « less
  2. Abstract

    Intense geoelectric fields during geomagnetic storms drive geomagnetically induced currents in power grids and other infrastructure, yet there are limited direct measurements of these storm‐time geoelectric fields. Moreover, most previous studies examining storm‐time geoelectric fields focused on single events or small geographic regions, making it difficult to determine the typical source(s) of intense geoelectric fields. We perform the first comparative analysis of (a) the sources of intense geoelectric fields over multiple geomagnetic storms, (b) using 1‐s cadence geoelectric field measurements made at (c) magnetotelluric survey sites distributed widely across the United States. Temporally localized intense perturbations in measured geoelectric fields with prominences (a measure of the relative amplitude of geoelectric field enhancement above the surrounding signal) of at least 500 mV/km were detected during geomagnetic storms with Dst minima (Dstmin) of less than −100 nT from 2006 to 2019. Most of the intense geoelectric fields were observed in resistive regions with magnetic latitudes greater than 55° even though we have 167 sites located at lower latitudes during geomagnetic storms of −200 nT ≤ Dstmin< −100 nT. Our study indicates intense short‐lived (<1 min) and geoelectric field perturbations with periods on the order of 1–2 min are common. Most of these perturbations cannot be resolved with 1‐min data because they correspond to higher frequency or impulsive phenomena that vary on timescales shorter than that sampling interval. The sources of geomagnetic perturbations inducing these intense geoelectric fields include interplanetary shocks, interplanetary magnetic field turnings, substorms, and ultralow frequency waves.

     
    more » « less
  3. Abstract

    Although seismic velocity and electrical conductivity are both sensitive to temperature, thermal lithosphere properties are derived almost exclusively from seismic data because conductivity is often too strongly affected by minor highly conductive phases to be a reliable indicator of temperature. However, in certain circumstances, electrical observations can provide strong constraints on mantle temperatures. In the southeastern United States (SEUS), magnetotelluric (MT) data require high resistivity values (>300 Ωm) to at least 200‐km depth. As dry mantle mineral conduction laws provide an upper bound on temperature for an observed resistivity value, the only interpretation is that lithospheric temperatures (<1330 °C) persist to 200 km. However, seismic tomography shows that velocities in this region are generally slightly slow with respect to references models; this observation has led to a view of relatively thin (<150 km), eroded thermal lithosphere beneath the SEUS. We show that MT and seismic (tomography, attenuation, receiver function) results are consistent with thick (~200 km), coherent thermal lithosphere in this region. Reduced seismic velocities (relative to reference models) can be explained by considering the effect of finite grain size (anelasticity). Calculated velocity as a function of temperature is overall slower when including anelastic effects, even at reasonable grain sizes of 1 mm to 1 cm; this permits mantle temperatures that are colder than would typically be inferred. We argue for a geodynamic scenario in which the present thermal lithosphere in the SEUS formed in association with the Central Atlantic Magmatic Province and has subsequently survived intact for ~200 Ma.

     
    more » « less
  4. Abstract

    The stress field in the eastern United States is commonly considered to be broadly uniform and due to homogeneous far‐field forces; however, modern and geologic stress indicators in this region show substantial heterogeneity. Using CitcomS to model stresses based on simple input density, temperature, and viscosity fields, we show that local isostasy is key in explaining the intraplate stress field in the southeastern United States. Crustal thickness variations appear to be most important in reproducing observations, although we slightly better match the observed stress field by including variable crustal viscosity informed by magnetotelluric imaging. Our results demonstrate that local gravitational body forces can substantially reorient far‐field stresses and thereby influence patterns of intraplate seismicity. We also show that variable crustal viscosity encourages a steepening of isostatic topography in the southeastern United States; this observation suggests that a sharp boundary in crustal strength may be important in explaining the apparently long‐lived Appalachian topographic escarpment.

     
    more » « less